Machine Learning.

More than mere robots.

Explore the latest

What’s on the horizon for machine learning in 2023?
人口知能(AI)

2023年の機械学習トレンド

ディエイジング、オープンソースのフレームワークから生成型AIまで。

この記事は約7分で読めます
The artists’ guide to Cattery
人口知能(AI)

アーティストのためのCatteryガイド:Catteryとは何か?

機械学習モデルの無料ライブラリ

この記事は約4分で読めます
3D model of Kiyan Prince
人口知能(AI)

Framestore、NukeのCopyCatでクリエイティブプロセスを効率化

『Long Live The Prince』キャンペーンで機械学習の技術を活用

この記事は約6分で読めます
Machine learning rotoscoped image
Machine learning

SmartROTO: enabling rotoscoping with artist-assisted machine learning

Key learnings from the front line of Foundry’s just-wrapped project SmartROTO.

この記事は約5分で読めます
GTC ML Header
Machine learning

Foundry at GTC: A step-by-step guide to CopyCat

Dive deeper into Nuke’s machine learning toolset.

この記事は約5分で読めます
CopyCat header
Machine learning

CopyCat: bringing machine learning into Nuke’s toolset

How you can harness the power of machine learning in Nuke.

この記事は約5分で読めます
Machine Learning for Artists Header
Machine learning

Machine learning for artists: the latest trends

Arm yourself with the latest machine learning tools.

この記事は約7分で読めます
Machine Learning Abstract Header
Machine learning

Future proof your content creation with machine learning

Artist and algorithm—working in harmony.

この記事は約分で読めます
Blue and red lights with face
Machine learning

Machine Learning: changing the game of Motion Capture

How machine learning is re-inventing motion capture.

この記事は約分で読めます
Machine learning
Machine learning

Machine learning in VFX software: the challenges to crack

Learn about SmartROTO - a Foundry-led research project investigating Machine Learning-assisted tools for rotoscoping.

この記事は約分で読めます
Deep learning exploration
Machine learning

Explaining deep learning: what it is, and what it’s not

Deep learning has the potential to reinvent every industry—including VFX. But what is it exactly? Find out here.

この記事は約分で読めます
Office space and 3D design
Machine learning

How data analysis is improving matchmoving

Matchmoving can be time consuming and fraught with frustration. We interview Alastair Barber, whose work with DNEG and the University of Bath focused on improving the process using data analysis and algorithms.

この記事は約分で読めます